

TEST REPORT

Test report no.: 1-1467/20-03-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03

Applicant

Payter B.V.Rozenlaan 1153051 LP Rotterdam / NETHERLANDSPhone:-/-Contact:Stefan Schoenmakere-mail:Stefan@payter.nl

Manufacturer

Payter B.V. Rozenlaan 115 3051 LP Rotterdam / NETHERLANDS

Test standard

ETSI EN 300 330 V2.1.1

Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

Test Item

Kind of test item:	Payment Terminal	
Model name:	Apollo Max Terminal APM01	9 10 20 30 40 50 60 70 80 100 10 10 10 50 60 70
Frequency:	13.56 MHz	
Technology tested:	RFID	
Antenna:	Integrated loop antenna	
Power supply:	12 V DC by external power supply	R 9
Temperature range:	-20°C to +55°C	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider Lab Manager Radio Communications

Test performed:

Hans-Joachim Wolsdorfer Lab Manager Radio Communications

Table of contents 1

1	Table o	f contents	2
2	Genera	l information	3
	2.1 I	Notes and disclaimer	3
		Application details	
	2.3	Test laboratories sub-contracted	3
3	Test sta	andard/s	4
4	Reporti	ng statements of conformity – decision rule	4
5	Test en	vironment	5
6	Test ite	۳	5
	6.1 (General description	5
	6.2	Additional information	5
7	Descrip	tion of the test setup	6
		Shielded fully anechoic chamber	
	7.2 (Conducted measurements normal and extreme conditions	8
8	Measu	rement uncertainty	9
9	Summa	ary of measurement results	10
10	Addit	tional comments	12
11	RF m	easurements	13
	11.1	Transmitter test results	
	11.1.1	EUT classification	
	11.1.2	Permitted range of operating frequencies §4.3.1	
	11.1.3	Operating frequency ranges §4.3.2	
	11.1.4	Modulation bandwidth §4.3.3	
	11.1.5	H-field (radiated, product class 1 and 2 only) §4.3.4	
	11.1.6	Transmitter radiated spurious domain emission limits < 30 MHz § 4.3.8	
	11.1.7	Transmitter radiated spurious domain emission limits > 30 MHz § 4.3.9	
12		sary	
13	Docu	ment history	
14	Accre	editation Certificate – D-PL-12076-01-03	38

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

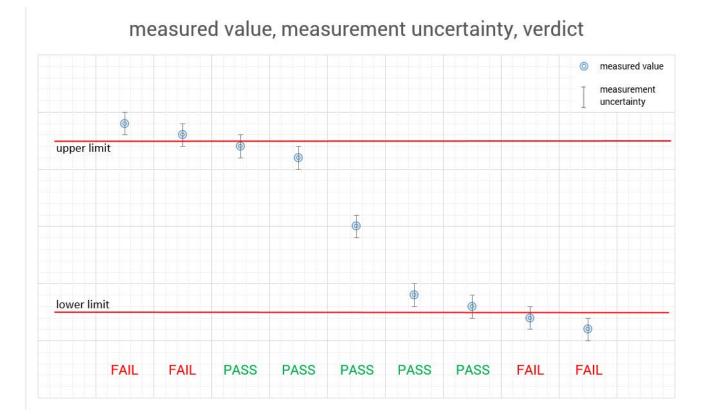
Date of receipt of order:	2021-10-26
Date of receipt of test item:	2021-11-03
Start of test:*	2021-11-05
End of test:*	2021-11-09
Deveen(a) avecent during the test.	/

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None


3 Test standard

Test standard	Date	Description
ETSI EN 300 330 V2.1.1	2017-02	Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +55 °C during high temperature tests -20 °C during low temperature tests		
Relative humidity content	:		55 %		
Barometric pressure	:		not relevant for this kind of testing		
Power supply	:	V _{nom} V _{max} V _{min}	 12 V DC by external power supply 34 V 12 V 		

6 **Test item**

General description 6.1

Kind of test item	:	Payment Terminal			
Model name:	:	Apollo Max Terminal APM01			
S/N serial number	:	Rad.APM20211500008-80Cond.APM20211500008-80			
Hardware status	APM01.BL.PAY V1.0				
Software status	:	1.0.0-b35			
Firmware status	:	-/-			
Frequency band	:	13.56 MHz			
Type of radio transmission	:	On off keying			
Use of frequency spectrum	:				
Type of modulation	:	ASK			
Number of channels	:	1			
Antenna	:	Integrated loop antenna			
Power supply	:	12 V DC by external power supply			
Temperature range	:	-20°C to +55°C			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

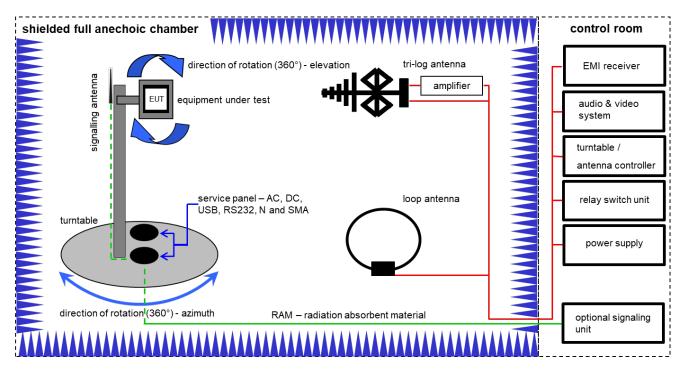
Test setup and EUT photos are included in test report:

1-1467/20-03-01_AnnexA 1-1467/20-03-01_AnnexB 1-1467/20-03-01_AnnexC

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded fully anechoic chamber

Measurement distance: tri-log antenna 3 meter; loop antenna 3 meter

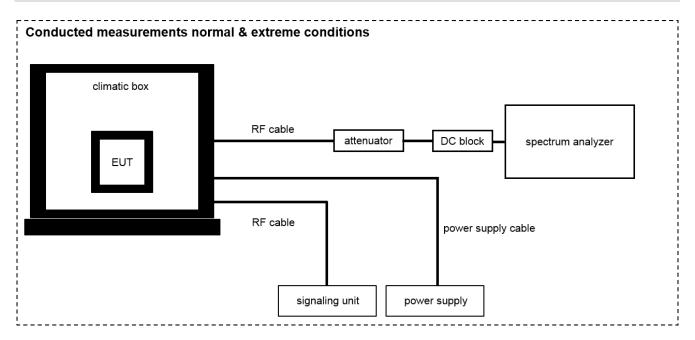
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

Equipment table:


No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	30.06.2023
2	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
5	в	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKl!	14.01.2020	13.01.2022
6	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
7	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
8	A,B	NEXIO EMV- Software	BAT EMC V3.20.0.26	EMCO		300004682	ne	-/-	-/-
9	A,B	PC	ExOne	F+W		300004703	ne	-/-	-/-

CTC I advanced

member of RWTÜV group

7.2 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No	No. Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of	Last	Next
NO.		Equipment			Senar No.	INV. NO.	Calibration	Calibration	Calibration
1	Α	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
2	Α	Power Supply	HMP2020	Rohde & Schwarz	101961	300006102	k	04.08.2020	03.08.2022
3	Α	Signal analyzer	FSV30	Rohde&Schwarz	104365	300005923	k	16.12.2020	15.12.2021
4	^	Temperature Test	VT 4011	Voetsch	585662306000	300005363	ev	08.05.2020	07.05.2022
4	А	Chamber	VI 4011	Industrietechnik	10	300005303	υv	00.03.2020	01.03.2022

Measurement uncertainty 8

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± used RBW					
RF frequency	± 1 x 10 ⁻⁷					
RF power, conducted	±1 dB					
RF power, radiated	± 6 dB					
Temperature	±1°C					
Humidity	± 5 %					

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC identifier	Description	verdict date		Remark
RF-Testing	ETSI EN 300 330 V2.1.1 (2017-02)	See table!	2021-11-16	-/-

Test Specification Clause	Test Case	temperature conditions	power source voltages	Mode	с	NC	NA	NP	Remark
4.3.1	Permitted range of operating frequencies	Nominal	Nominal	-/-	Dec		y the pr 11.1.2)	ovider	-/-
		Nominal	Nominal		\boxtimes				
		Low	Low		\boxtimes				
4.3.2	Operating	Low	High	-/-	\boxtimes				-/-
4.0.2	frequency ranges	High	Low		\boxtimes				
		High	High		\boxtimes				
		Nominal	Nominal		\boxtimes				
		Low	Low		\boxtimes				
4.3.3	Modulation	Low	High	-/-	\boxtimes				-/-
4.3.5	bandwidth	High	Low		\boxtimes				
		High	High		\boxtimes				
	Transmitter H- field requirements	Nominal	Nominal	-/-					Product class 1 & 2 only
		Low	Low		\boxtimes				
4.3.4		Low	High		\boxtimes				
4.0.4		High	Low		\boxtimes				
		High	High		\boxtimes				
		Nominal	Nominal						Product class
	Transmitter RF	Low	Low				\boxtimes		
4.3.5		Low	High	-/-			X		
4.0.0	carrier current	High	Low				\boxtimes		3 only
		High	High				X		
		Nominal	Nominal						
		Low	Low						
4.3.6	Transmitter	Low	High	-/-			\boxtimes		Product class
4.0.0	radiated E-field	High	Low				\boxtimes		4 only
		High	High				\boxtimes		
4.3.7	Transmitter conducted spurious emissions	Nominal	Nominal	-/-					Product class 3 only

© CTC advanced GmbH

Test report no.: 1-1467/20-03-02

4.3.8	Transmitter radiated spurious domain emission limits < 30 MHz	Nominal	Nominal	-/-				-/-
4.3.9	Transmitter radiated spurious domain emission limits > 30 MHz	Nominal	Nominal	-/-				Product class 1, 2 & 4 only
		Nominal	Nominal			\boxtimes		
	Transmitter 4 3 10 Frequency	Low	Low					Only for channelized systems
4.3.10		Low	High	-/-		X		
4.3.10	stability	High	Low			X		
		High	High			\boxtimes		
4.4.2	Receiver spurious emissions	Nominal	Nominal	-/-				Only apply to receivers which are not co-located transmitter
4.4.3	Adjacent channel selectivity	Nominal	Nominal	-/-		×		Only for channelized systems
4.4.4	Receiver blocking or desensitization	Nominal	Nominal	-/-		×		Not for tagging systems

Note:

- Compliant С
- Not compliant NC
- NA Not applicable
- Not performed NP

10 Additional comments

Reference documents:EN300330testApollo.docx; Filled_Customer Questionnaire_1-1467-20_3.docxSpecial test descriptions:None

Configuration descriptions: None

11 RF measurements

11.1 Transmitter test results

11.1.1 EUT classification

Product Class: (ETSI EN 300 330 V2.1.1 (2017-02) table B.1)

Product Class	1	2	3	4	
Description of transmitter	Inductive loop coil transmitter	Inductive loop coil transmitter	Customized, large size loop antennas only	E-field transmitter	
Antenna to be tested	Integral antenna (antenna type 1) or dedicated antenna supplied with the equipment (antenna type 2); (see note 1)	Two representative antennas supplied with the equipment (see note 2)	Test without an antenna by using an artificial antenna	Each type of antenna to be used	
Freq. range	9 kHz to 30 MHz	9 kHz to 30 MHz	9 kHz to 135 kHz	9 kHz to 30 MHz	
Loop antenna area	< 30 m²	< 30 m² (See note 3)	> 30 m²	n.a.	
Length of antenna	< λ/4 (75 meters/f where f is in MHz) or < 30 m, whichever is shorter	< λ /4 (75 meters/f where f is in MHz) or < 30 m, whichever is shorter	n.a.	n.a.	
Customization of antenna design allowed	of antenna No Y		Yes	n.a.	
Transmitter carrier output limits	H-field at 10 m (see clause 4.3.4.3)	H-field at 10 m (see clause 4.3.4.3)	Current in artificial antenna (see note 4 & 4.3.4.3 and 4.3.6.3)	H-field at 10 m (see clause 4.3.6.3)	
Spurious limits	H-field at 10 m (see clauses 4.3.8.3 and 4.3.9.3)	H-field at 10 m (see clauses 4.3.8.3 and 4.3.9.3)	Current in artificial antenna (see note 4 & clauses 4.3.7.3 & 4.3.19.3) s, the equipment will be te	H-field at 10 m (see clauses 4.3.8.3 and 4.3.9.3)	

NOTE 1: Where a manufacturer provides a range of standard antennas, the equipment will be tested as Product Class 1 equipment, with the antenna(s) attached. The measurements shall be repeated for each antenna.

NOTE 2: The two antennas shall meet the manufacturer's design rules published in the equipment manual and shall have maximum and minimum loop areas respectively. Both antennas shall have the maximum magnetic dipole moment as declared by the manufacturer.

NOTE 3: Customization is only allowed according to the manufacturer's antenna design rules published in the equipment manual.

NOTE 4: ON-site measurements may be required.

Test report no.: 1-1467/20-03-02

Product Classes: (ETSI EN 300 330 V2.1.1 (2017-02) table B.1)

ass 1

- □ Class 2
- □ Class 3
- □ Class 4

Temperature range: (ETSI EN 300 330 V2.1.1 (2017-02) sub clause 5.6.1.2)

\times	Category 1	- 20 °C to + 55 °C
	outegoly i	20 0 10 00 0

- □ Category 2 10°C to + 55 °C
- □ Category 3 0 °C to + 35 °C
- $\Box \qquad \text{other} \qquad X \ ^\circ C \ \text{to} \ + X \ ^\circ C$

11.1.2 Permitted range of operating frequencies

Description:

The permitted range of operating frequencies is the frequency range over which the equipment is authorized to operate.

Conformance:

Customer declaration			
Operational frequency band*:	13.553 MHz to 13.567 MHz		
Nominal Operating Frequencies:	13.56 MHz		

*) Frequency range according ETSI EN 300 330 V2.1.1 (2017-02), table 1

§4.3.1

11.1.3 Operating frequency ranges

Description:

The operating frequency range (OFR) is the frequency range over which the EUT is transmitting. The operating frequency range of the EUT is determined by the lowest (f_L) and highest frequency (f_H) as occupied by the power envelope. With the center frequency of the OFR as: $f_C = (f_H+f_L)/2$. An EUT could have more than one operating frequency range.

Measurement:

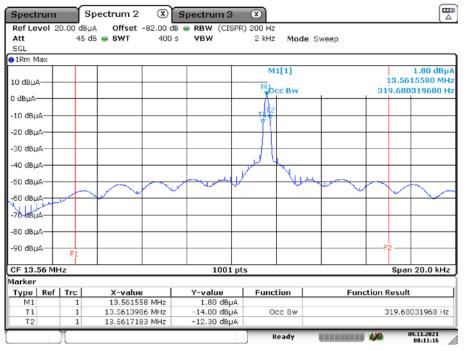
The measuring receiver may be a spectrum analyzer, oscilloscope, selective power meter or any measuring receiver which is appropriate to perform the intended measurement of the EUT. The measurement antenna shall be placed at one point of the setup up. Alternatively, a current probe could be used. The 99 % OBW function shall be used to determine the operating frequency range.

Measurement parameters						
Detector:	RMS					
Sweep time:	Auto					
Resolution bandwidth:	200 Hz					
Video bandwidth:	≥ RBW					
Span:	-/-					
Trace-Mode:	Max hold					
Measurement uncertainty	See chapter 8					
Test setup	See chapter 7.2A					

Limits: ETSI EN 300 330 V2.1.1 (2017-02), table 1

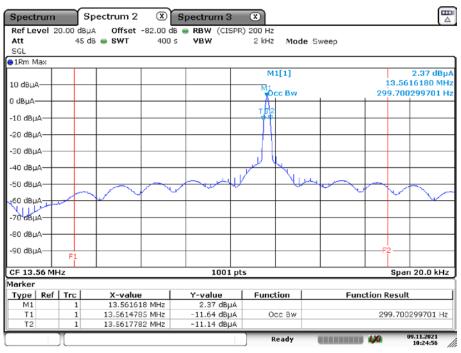
	Frequency Bands / frequencies	
Transmit and Receive	9 kHz to 90 kHz	Inductive devices, Generic use
Transmit and Receive	90 kHz to 119 kHz	Inductive devices, Generic use
Transmit and Receive	119 kHz to 140 kHz	Inductive devices, Generic use
Transmit and Receive	140 kHz to 148.5 kHz	Inductive devices, Generic use
Transmit and Receive	148.5 kHz to 5 MHz	Inductive devices, Generic use
Transmit and Receive	400 kHz to 600 kHz	RFID only
Transmit and Receive	5 MHz to 30 MHz	Inductive devices, Generic use
Transmit and Receive	3 155 kHz to 3 400 kHz	Inductive devices, Generic use
Transmit and Receive	984 kHz to 7 484 kHz (Note 3, Centre frequency is 4 234 kHz)	Inductive devices, Railway application
Transmit and Receive	4 516 kHz	Inductive devices, Railway application
Transmit and Receive	6 765 kHz to 6 795 kHz	Inductive devices, Generic use
Transmit and Receive	7 400 kHz to 8 800 kHz	Inductive devices, Generic use
Transmit and Receive	10.200 MHz to 11.000 MHz	Inductive devices, Generic use
Transmit and Receive	11.810 MHz to 15.310 MHz (Centre frequency is 13.56 MHz)	RFID only
Transmit and Receive	12.5 MHz to 20 MHz	Inductive devices, Wireless healthcare
Transmit and Receive	13.553 MHz to 13.567 MHz	Inductive devices, Generic use
Transmit and Receive	26.957 MHz to 27.283 MHz	Inductive devices, Generic use
Transmit and Receive	27.090 MHz to 27.100 MHz	Inductive devices, Railway application
30 MHz. NOTE 2: On non-harmonised pa frequency, channel/f automatic transmitte	be noted that other frequency bands may be available in arameters, national administrations may impose certain requency separations, maximum transmitter radiated p er shut-off facility, as a condition for the issue of an Ind a condition for use under "licence exemption" as it is in	n conditions such as the type of modulation, bower, duty cycle, and the inclusion of an ividual Rights for use of spectrum or General most cases for Short Range Devices.

NOTE 3: Transmitting only on receipt of a Balise/Eurobalise tele-powering signal from a train. cases for Short Range Devices.


Results:

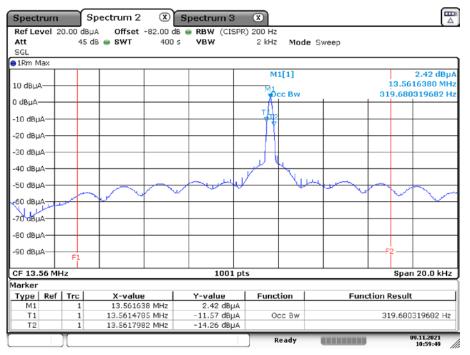
		Marker frequencies / MHz						
TEST CO	NDITIONS	without card		with card		-/-		
		Fi	Fh	Fi	Fh	Fi	Fh	
T _{nom}	V _{nom}	13.56139	13.56171	13.56139	13.56171	-/-	-/-	
T _{low}	Vlow	13.56147	13.56177	13.56147	13.56177	-/-	-/-	
I low	V_{high}	13.56147	13.56179	13.56147	13.56179	-/-	-/-	
т	Vlow	13.56145	13.56177	13.56149	13.56181	-/-	-/-	
Thigh	Vhigh	13.56145	13.56177	13.56151	13.56183	-/-	-/-	
Min. Flow		13.56139	-/-	13.56139	-/-	-/-	-/-	
Max. Fhigh		-/-	13.56179	-/-	13.56171	-/-	-/-	
Limit		13.55300	13.56700	13.55300	13.56700	-/-	-/-	
Where: F ₁ = is the lower edge of the OBW / MHz								

 $F_h =$ is the upper edge of the OBW / MHz

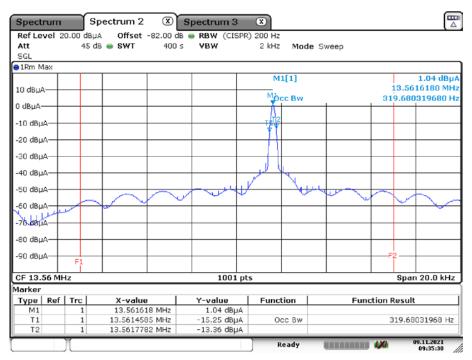

Plots: Operating frequency ranges without card

Plot 1 (Tnom / Vnom):

Date: 9.NOV.2021 08:11:17


Plot 2 (T_{min} / V_{min}):

Date: 9.NOV.2021 10:24:57

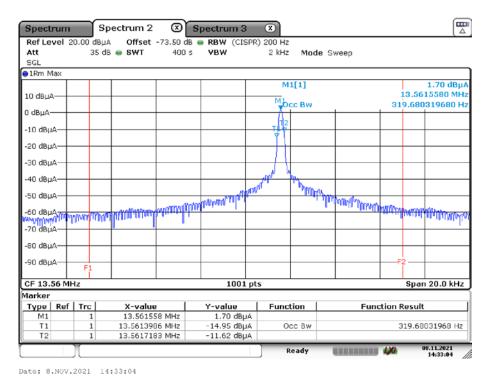


Plot 3 (T_{min} / V_{max}):

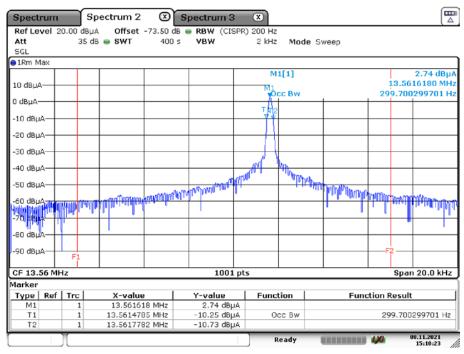
Date: 9.NOV.2021 10:59:50

Plot 4 (T_{max} / V_{min}):

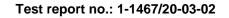
Date: 9.NOV.2021 09:35:31


Plot 5 (T_{max} / V_{max}):

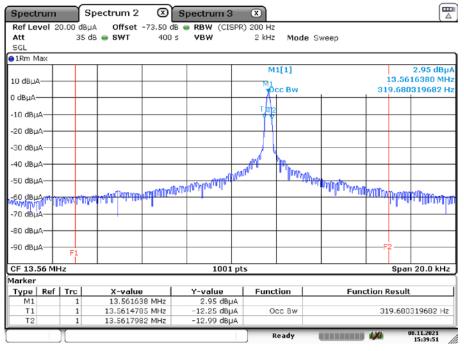
Spectrum Ref Level 2		Spectrum 2 🔇	Spectrum 3	8) 200 Hz		
Att	45	dB 👄 SWT 40	0s VBW	2 kHz Mod	e Sweep	
SGL						
1Rm Max						
				M1[1]		1.05 dBµA 13.5616180 MHz
10 dBµA				Mocc Bw		319.680319680 Hz
D dBµA						319.000319000 Hz
				- 12		
10 dBµA				÷ Ŧ		
20 dBµA				- (1)		
-30 dBuA						
-30 dBµA						
-40 dBμA				P to		
-50 dBµA						
			w wy			
60 dBµA	w/					
-70 dBUA						
-80 dBµA-+	_					
-90 dBµA						
	F1					
CF 13.56 MH	Ηz		1001 pt	s	· ·	Span 20.0 kHz
larker						
Type Ref		X-value	Y-value	Function	Functi	on Result
M1	1	13.561618 MHz	1.05 dBµA			
T1 T2	1	13.5614585 MHz 13.5617782 MHz	-15.10 dBµA -13.47 dBµA	Occ Bw		319.68031968 Hz
14		13.3017782 MHz	-13.47 UBµA			
	1			Ready		09.11.2021 09:16:42


Date: 9.NOV.2021 09:16:43

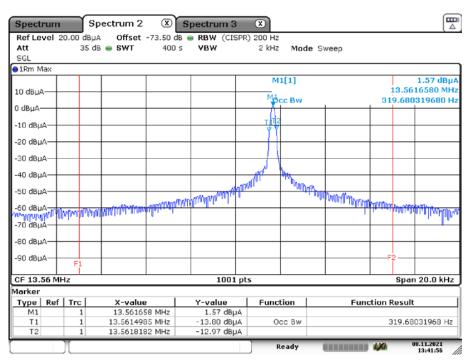
Plots: Operating frequency ranges with card


Plot 1 (T_{nom} / V_{nom}):

Plot 2 (T_{min} / V_{min}):



Date: 8.NOV.2021 15:10:22



Plot 3 (T_{min} / V_{max}):

Date: 8.NOV.2021 15:39:51

Plot 4 (T_{max} / V_{min}):

Date: 8.NOV.2021 13:41:56

Plot 5 (T_{max} / V_{max}):

Spectrum Ref Level 2		Spectrum 2	-73.50 dB	Spectrum 3	×				
Att		db 👄 SWT	400 ≤		2 kHz	Mode	e Sweep		
SGL						nout	encep.		
1Rm Max									
					M	1[1]			1.51 dBµA
10 dBuA								1	3.5616780 MHz
					MB	cc Bw		319	.680319682 Hz
D dBµA					<u>Λ</u>				
-10 dBuA					TU				
TO GODA					. ĭ¥				
-20 dBµA-+									
-30 dBuA									
-40 dBµA-+					11	byn.			ann lang anna anna anna anna anna anna a
ED dout				undlighnhamathlig	n ^o	""Dillor	n		
-SU GRHY				and the state of t		0.08	10 Million and Driver	0.0	
60 dBµA	have before	CONTRACTOR OF CONTRACT		Mallera Leal.			10.000.04	M MAN MARK	กับ เป็น (การ การ การ การ การ การ การ การ การ การ
WY WIND TO BE	International Contraction of the	Afrikaanse van de Ba							a constant and a little and a l
-70 dBµA-+									
-80 dBuA									
-90 dBµA	F1	-						F2	
	ī								
CF 13.56 M	Hz			1001 pt	5				Span 20.0 kHz
1arker									
	Trc	X-value		Y-value	Func	tion	Fu	nction Re	esult
M1	1	13.56167		1.51 dBµA					
T1	1	13.561518		-11.92 dBµA	0	cc Bw		319	.680319682 Hz
T2	1	13.561838	2 MHz	-14.98 dBµA					
					P	teady		100	08.11.2021 14:01:39

Date: 8.NOV.2021 14:01:39

11.1.4 Modulation bandwidth

Description:

The modulation bandwidth contains all associated side bands above the following level:

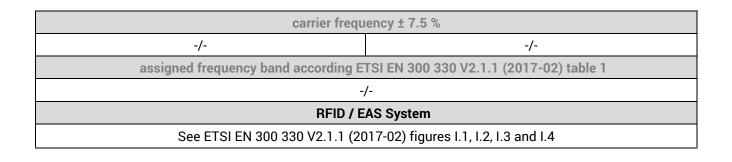
a) For carrier frequencies below 135 kHz:

• 23 dB below the carrier or the appropriate spurious limit as defined in clauses 4.3.7, 4.3.8, 4.3.9.

b) For carrier frequencies in the range 135 kHz to 30 MHz:

• 15 dB below the carrier or the appropriate spurious limit as defined in clauses 4.3.7, 4.3.8, 4.3.9.

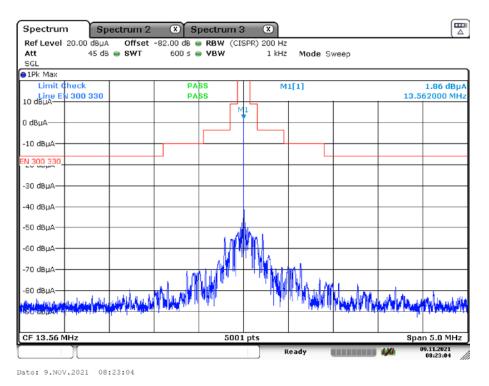
c) For RFID within the transmitter emission boundary of figure I.1, and for RFID and EAS systems within the transmitter mask of figures I.2, I.3 and I.4, see CISPR 16-1-4 [2]

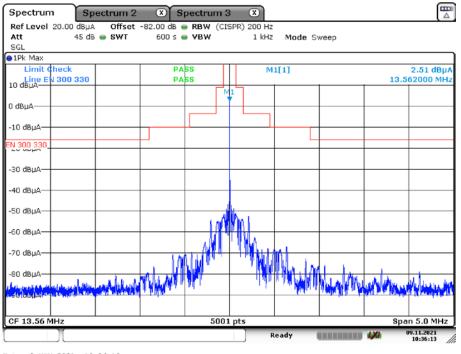

Measurement:

Measurement parameters					
Detector:	Max peak				
Sweep time:	Auto				
Resolution bandwidth:	200Hz				
Video bandwidth:	≥ RBW				
Trace-Mode:	Max Hold				
Measurement uncertainty	See chapter 8				
Test setup	See chapter 7.2 A				

<u>Limits:</u>

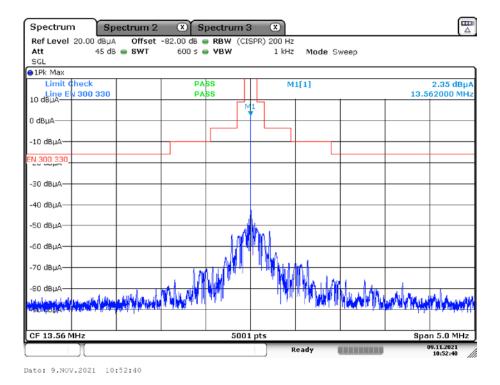
The modulation bandwidth shall be within the assigned frequency band see table 1 or ± 7.5 % of the carrier frequency whichever is the smallest. For RFID and EAS Systems, the modulation bandwidth shall be within the transmitter emission boundary of figures 1.1, 1.2, 1.3 and 1.4.

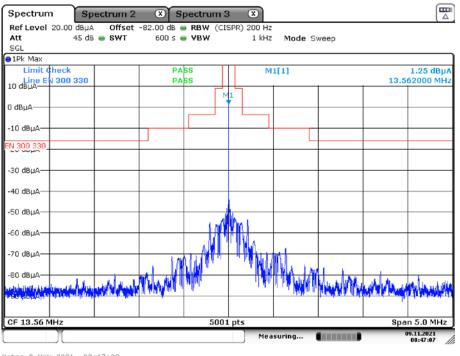

For further information, see CEPT/ERC/REC 70-03 [i.1] or ERC/ECC/CEPT Decisions as implemented through National Radio Interfaces (NRI) and additional NRI as relevant.


CTC I advanced

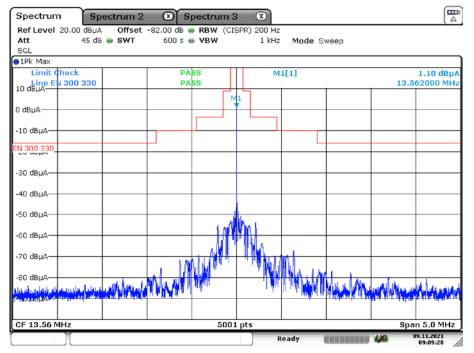
Results: Modulation bandwidth without card

Plot 1: (Tnom / Vnom)

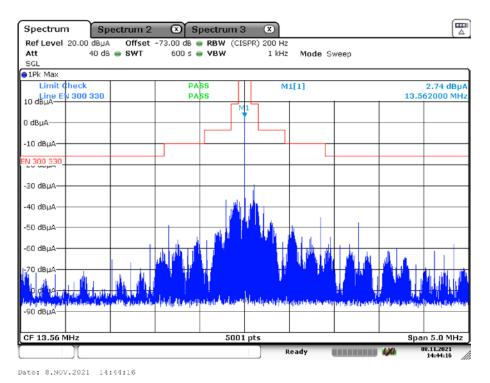

Plot 2: (T_{min} / V_{min})

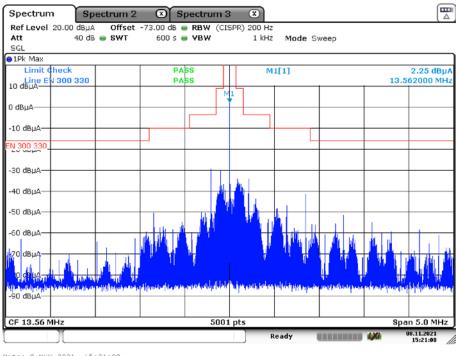

Date: 9.NOV.2021 10:36:13

Plot 3: (T_{min} / V_{max})


Plot 4: (T_{max} / V_{min})

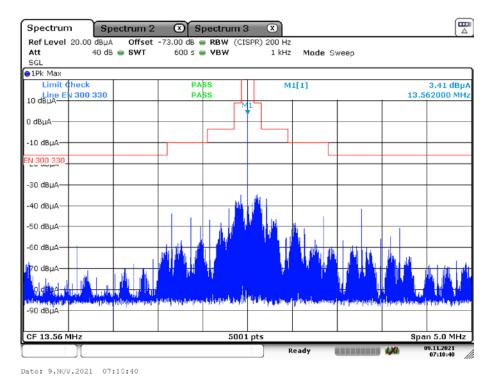
Date: 9.NOV.2021 08:47:08

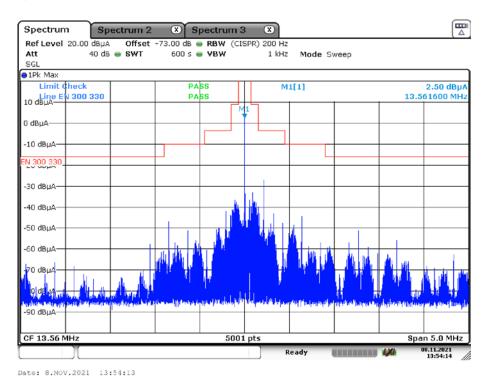

Plot 5: (T_{max} / V_{max})


Date: 9.NOV.2021 09:09:28

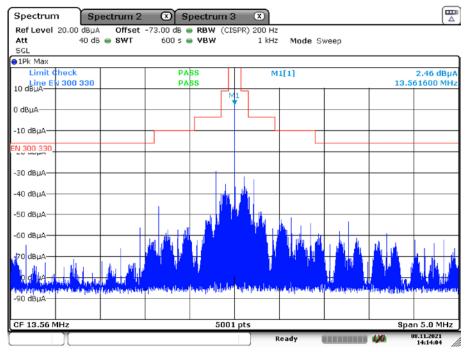
Results: Modulation bandwidth with card

Plot 1: (Tnom / Vnom)


Plot 2: (T_{min} / V_{min})


Date: 8.NOV.2021 15:21:08

Plot 3: (T_{min} / V_{max})



Plot 4: (T_{max} / V_{min})

Plot 5: (T_{max} / V_{max})

Date: 8.NOV.2021 14:14:04

11.1.5 H-field (radiated, product class 1 and 2 only)

Description:

The measurements of the transmitter radiated H-field shall be made on an open field test site as specified in clause C.1.3. Any measured values shall be at least 6 dB above the ambient noise level.

The H-field produced by the equipment shall be measured at standard distance of 10 m. Where this is not practical, e.g. due to physical size of the equipment including the antenna or with use of special field cancelling antenna, then other distances may be used. When another distance is used, the distance used and the field strength value measured shall be stated in the test report. In this case, the measured value at actual test distance shall be extrapolated to 10 m according to annex H and these calculations shall be stated in the test report.

For measuring equipment calibrated in $dB\mu V/m$, the reading should be reduced by 51.5 dB to be converted to $dB\mu A/m$.

Measurement:

The measurements of the transmitter radiated H-field shall be made on an open field test site as specified in clause C.1.3. Any measured values shall be at least 6 dB above the ambient noise level.

Measurement parameters					
Detector:	Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	200 Hz				
Video bandwidth:	1 kHz				
Span:	-/-				
Trace-Mode:	Max Hold				
Measurement uncertainty	See chapter 8				
Test setup	See chapter 7.1A, 7.2A				

<u>Limits:</u>

Frequency range (MHz)	H-field strength limit (Hf) dBµA/m at 10 m or specified in mW e.r.p.			
0.009 ≤ f < 0.090	72 descending 3 dB/oct above 0,03 MHz or according to			
	note 1 (see note 5)			
0.09 ≤ f < 0.119	42			
0.119 ≤ f < 0.135	66 descending 3 dB/oct above 0.119 MHz			
	or according to note 1 (see notes 3 and 5)			
0.135 ≤ f < 0.140	42			
0.140 ≤ f < 0.1485	37.7			
0.1485 ≤ f < 30	-5 without transmitter modulation -15 with transmitter modulation			
	(see note 4)			
0.315 ≤ f < 0.600	-5			
3.155≤ f < 3.400	13.5			
4.234	9 (see note 9)			
4.516 7	7			
7.400 ≤ f < 8.800	9			
10.2 ≤ f < 11.00	9			
12.5 ≤ f ≤ 20 -7				
$6.765 \le f \le 6.795$ 42 (see notes 3 and 7)				
26.957 ≤ f ≤ 27.283	42 (see note 3)			
13.410 ≤ f ≤13.553, 13.567 ≤ f ≤ 13.710	9 (see note 6)			
13.110 ≤ f ≤ 13.410, 13.710 ≤ f ≤ 14.010	-3.5 (see note 6)			
12.660 ≤ f ≤ 13.110, 14.010 ≤ f ≤ 14.460				
11.810 ≤ f ≤ 12.660, 14.460 ≤ f ≤ 15.310	-16 (see note 6)			
13.460 ≤ f ≤ 13.553, 13.567 ≤ f ≤ 13.660	27 (see note 6)			
13.360 ≤ f ≤ 13.460, 13.660 ≤ f ≤ 13.760	Linear transition from 27 to -3,5 (see note 6)			
13.110 ≤ f ≤ 13.360, 13.760 ≤ f ≤ 14.010	-3,5 (see note 6)			
12.660 ≤ f ≤ 13.110, 14.010 ≤ f ≤ 14.460	-5 (see note 6)			
13.553 ≤ f ≤ 13.567	42 (see note 3) or 60 (see notes 2 and 3)			
27.095	42			
26.995, 27.045, 27.095, 27.145, 27.195	100 mW			
 for loop coil antennas with an area between 0,05 value + 10 × log (area/0,16 m2); for loop coil antennas with an area < 0,05 m2 the NOTE 2: For RFID (incl. NFC) and EAS applications only. NOTE 3: Spectrum mask limit, see annex I. NOTE 4: For further information see annex J. NOTE 5: Limit is 42 dBµA/m for the following spot frequenc Hz, and 129,1 kHz ± 500 Hz. NOTE 6: Only in conjunction with spectrum mask, see annex NOTE 7: The frequency range 6,765 MHz - 6,795 MHz is not Radio Regulations [i.13]. 	ies: 60 kHz ± 250 Hz, 66,6 kHz ± 750 Hz, 75 kHz ± 250 Hz, 77,5 kHz ± 250 x l. a harmonised ISM frequency band according article 5.138 of the ITU			
NOTE 8: Center frequencies for channelized systems by usi NOTE 9: The limit is valid in the range 984 kHz - 7 484 kHz for from a train.	ng ≤ 10 kHz bandwidth. or Transmitting only on receipt of a Balise/Eurobalise tele- powering signal			

Test report no.: 1-1467/20-03-02

<u>Results:</u>

Test (Conditions	Transmitter field strength / (dBµA/m) @3m	Transmitter field strength / (dBµA/m) @10m*
T _{nom}	Vnom	22.46	1.46
т.	V _{min}	-/-	2.51
Tlow	V _{max}	-/-	2.35
Thigh	V _{min}	-/-	1.25
	V _{max}	-/-	1.10

*) converted from 3 m to 10 m using a correction factor of 21 dB (ETSI EN 300 330 V2.1.1 (2017-02, H.2)

11.1.6 Transmitter radiated spurious domain emission limits < 30 MHz

§ 4.3.8

CTC I advanced

Description:

Spurious domain emission limits are limits on emissions at frequencies other than those of the carrier and sidebands associated (clauses 4.3.2 and 4.3.3) with normal test modulation (clause 5.8).

Measurement:

The equipment under test shall be switched on with normal modulation. The characteristics of the modulation signal used shall be stated on the test report. The measuring receiver shall be tuned over the frequency range 9 kHz to 30 MHz, except for the frequency band on which the transmitter is intended to operate. At each frequency at which a relevant spurious signal is detected the equipment under test and the test antenna shall be rotated until maximum field strength is indicated on the measuring receiver. This level shall be noted.

If the transmitter can be operated in the standby mode, then the measurements shall be repeated in the standby mode.

For measuring equipment calibrated in $dB\mu V/m$, the reading should be reduced by 51,5 dB to be converted to $dB\mu A/m$.

Measurement parameters				
Detector:	Quasi Peak (peak pre-scan)			
Sweep time:	Auto			
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz 300 Hz / 10 kHz / 100 kHz			
Video bandwidth:	> RBW			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	See sub clause 8			
Test setup	See chapter 7.1A			

<u>Limits:</u>

The radiated field strength of the spurious domain emissions below 30 MHz shall not exceed the generated H-field $dB\mu A/m$ at 10 m given in the table below.

Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz
27 dBµA/m at 9 kHz descending 3 dB/oct	-3.5 dBµA/m

Test report no.: 1-1467/20-03-02

Results:

Radiated H-field*								
	Channel 1			-/-			-/-	
F	BW	Р	F	BW	Р	F	BW	Р
nc	no peaks detected			-/-	-/-	-/-	-/-	-/-

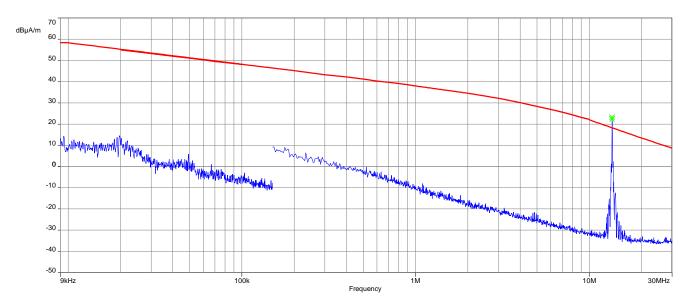
*) Values measured at 3 m, thereby the limit in the plot below is adjust according to ETSI EN 300 330 V2.1.1 (2017-02) annex H.2.

Where

F

BW

Ρ


PP

QP

Frequency of spurious, [F] = kHz
 Measurement receiver bandwidth, [BW] = Hz
 Level of spurious, [P] = dBμA/m
 Positive peak detector
 Quasi peak detector

Plots:

Plot 1: 9 kHz to 30 MHz, magnetic

11.1.7 Transmitter radiated spurious domain emission limits > 30 MHz § 4.3.9

Description:

Spurious domain emission limits are limits on emissions at frequencies other than those of the carrier and sidebands associated with normal test modulation (clause 5.8).

Measurement:

The transmitter shall be switched on with normal modulation, and the measuring receiver shall be tuned over the frequency range 30 MHz to 1 000 MHz.

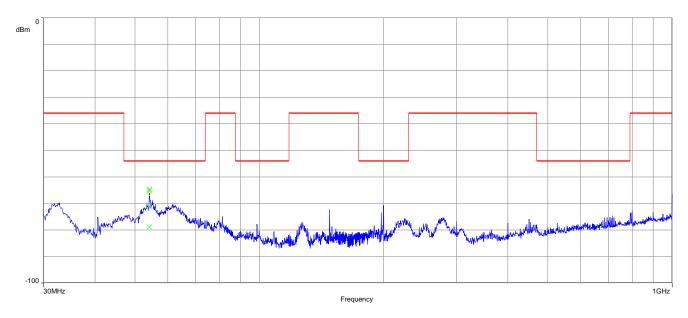
At each frequency at which a relevant spurious component is detected, the test antenna shall be raised and lowered through the specified range of heights until a maximum signal level is detected on the measuring receiver.

Measurement parameters				
Detector:	Quasi Peak (peak pre-scan)			
Sweep time:	auto			
Resolution bandwidth:	120 kHz / 100 kHz			
Video bandwidth:	> RBW			
Span:	30 MHz to 1 GHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	See chapter 8			
Test setup	See chapter 7.1B			

<u>Limits:</u>

Max. spurious level		
47 MHz to74 MHz87.5 MHz to118 MHz174 MHz to230 MHz470 MHz to790 MHz		
4.0 nW / -54 dBm	250 nW / -36 dBm	

Test report no.: 1-1467/20-03-02


Results:

Radiated Spurious emissions								
	Channel 1			Channel 2			Channel 3	
F	BW	Р	F	BW	Р	F	BW	Р
54.15	100	-64.71QP	-/-	-/-	-/-	-/-	-/-	-/-

Where	F	=	Frequency of spurious, [F] = MHz
	BW	=	Measurement receiver bandwidth, [BW] = kHz
	Р	=	Level of spurious, [P] = dBm
	PP	=	Positive peak detector
	QP	=	Quasi peak detector

<u>Plot:</u>

Plot 1: 30 MHz to 1 GHz, vertical and horizontal polarization

Glossary 12

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
-	
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard Federal Communications Commission
FCC	
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

13 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-11-16

14 Accreditation Certificate – D-PL-12076-01-03

first page	last page
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Deutsche Akkreditierungsstelle GmbH Standort Berlin Spitzelmarkt 10 DD117 Berlin Sundort Berling DD227 Frankfurt am Main Spitzelmarkt 10 DD117 Berlin
Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 09.06.2020mit der Akkreditierungsnummer: D-PL-12076-01. Sie besteht nus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 36 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-03 Ander Stehtensbergen und der folgenden Anlage mit insgesamt 36 Seiten. Nerenfunt am Main, 69.06.2020 Die urkunde samt Urkundenzöge göt den Stand am Zottpanit des Austrationgsdatum wieder. Der jewein einswieß fanse der Erstellungskeiter Die urkunde samt Urkundenzöge göt den Stand am Zottpanit des Austrationgsdatum wieder. Der jewein einswieß fanse der Erstellungskeiter	über den durch die DAKS bestähtigten Akkreditierungsbereich hinausgehen. Die Akkreditierung erfolgte gemäß des Gesetzei über die Akkreditierungsbereich (AkkStelleG)) sowie der Verondrung (EG) Nr. 765/2008 des Loropäixchen Pärahenst und des Rates über die Vorschrift ten für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten. Die DAkkS ist Unterzeichnerin der Multiateralen Abkommen zur gegenseitigen Anerkennung der Europane ooperation för Accreditation (CA) des International Accreditation Forum (AF) und der International Laboratory Accreditation Cooperation (LAC). Die Unterzeichner dieser Abkommen erknenen hine Akkreditierungen gegenseitig au. Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org LAC: www.laf.org IAF: www.laf.nu

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-03.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-03_TK.pdf