PAYTER
DATA AP MANUAL

June 2024

Contents

LT oo LU Te 1o o IR PP PPPPPPRRE 3
F XU T=T o (o3 o] o PP 3
GENETAl DAta REOUESTS .. ivuiitiiiiiiiieiii ettt ettt ettt et s et e et e et s et et saaasannsaensannsannsaensasnsennsesnsesnseensennsennssnnsenns 4
g Te 1= PP P P PPRPPI 4
(01 UT=] oY ARSI 4
T o PSPPI 5
LTS £ PP PPPP PP 5
FaNed el =T =F=) (o] o = SO PP PPPPPPP 7
= T=4 o V< PP PP PP 9
Data LOOKUPD FESPONSE tuiitiiiiiiiiiiie it ittt eteeeeteeteteestestnstnsteesuesessessessensenstnstnsssssessessessensenssnssnsssssessensensenssnssneses 10
TaTe =3 =T PP PPPP 11
TranSaCtioON DOCUMEBNT......e ettt et et e ettt et et st st s tae s tae s tae s raeetaeetneenneerneennenen 11
V=T oLl B TeTe1U] o 1= o | PSP PPRREN 12
COMMON USE CASES..uuiiiuiiiiiiiiiiiiiiii ittt ettt et e taa s e raa e taa s eaas s e tase s eaassenassseansserassstanesennssns 13
[aalole] g a N g= T FsT-Toxd[o] o [D F-) &= TSP 13

P Y o] o 1= o o 1) OO PRRN 14
S F=Taa] o1 (=Tl LI ol =T 18 L= € 14
AUTNENTICATION iuutiiiiiiiiiiii e e e b e e r st e aaa e 14

Revision History

Version

Date

Author

Notes

1.0

14/6/2024

Product Delivery

Initial externally shareable version

Introduction

The MyPayter APl is a HTTP REST api, used to access the MyPayter back-end. It contains several sub-sections,
including the Data APl which can be used to retrieve reporting data. The API can be reached
at https://api.mypayter.com/API.

This manual will cover how to perform requests, and how to retrieve the data you need from the Data API.

Authentication

Before performing any data APl request, an authenticate request must be completed. A successful authentication
results in a authentication token, which needs to be included in subsequent requests.

Authentication is done by a POST request to the /Auth URL, supplying the credentials in the body, as shown
below:

"username" : "USERNAME",
"password" :"PASSWORD",
"domain":"DOMAIN"

A successful authentication will result in a response containing the authentication token:

"tokenId": "3ea2714d-c445-4c5e-8590-28d806065784",

"userId": 1,
"username": "USERNAME",
"domain": "DOMAIN",

"created": 1541154878996,
"expiresIn": 86400

The response contains the token, some information about the authenticated user, and a created timestamp and
expiry for the token (in seconds). The token value must be supplied in the header of the other API requests to bind
to this authentication context.

In case of an error during authentication, the response will have a HTTP error status, and will contain an error
description:

"code": -1,
"url": "/API/Auth",
"description": "failed to authenticate"

Itis strongly recommended to use a single token for multiple requests. Token expiry can depend on several
factors, but the token will be valid for at least several hours.

To use the authentication token add the following HTTP header any request, including the token you retrieved from
the authentication request of course.

Authorization: CURO-TOKEN token="3ea2714d-c445-4c5e-8590-28d806065784"

The current status of the token can be retrieved by making a GET request to the /Auth/{token} URL. This can be
used to examine the

After completion, it is recommended to end the session by closing the authentication context. This can be done
with a DELETE request to the /Auth/{token} URL, supplying the token to delete in both the header and the URL.

For sample HTTP requests and responses concerning authentication, please see Appendix A.1.

General Data Requests

The Data API can be used to retrieve specific data records in the different indexes, but also to calculate
aggregations over data sets (or both).

Access the data with a POST of a data request to the /Data URL. The data request is shown below.

"index": "Events",
"query": "",
"maxResults": 10,
"offset": O,
"sorts": [],
"filters": [],
"aggregations": []

The data request contains:

e theindexto query

e alucene query to filter the data

e the maximum number of documents to return

e anoptional offset (used for paging results)

e alist of filters (allowing more complex filtering than the query)
e alistof sortfields

e alist of data aggregations

Index

The available indexes and their relevant fields will be covered in the next chapter.

Query

The query parameter is used to filter the data elements using a Lucene query. This query is performed before the
other filters. It follows the Lucene query syntax.

<query> ::= <part>|<part> <query>

<part> ::= <modifier><term>

<modifier> ::= "4" | "-" | "¢

<term> ::= <field>":"<matcher> | " (" <query> ")"
<field> ::= [a-z]+

<matcher> ::= [a-z*?]

For example: +domain:DOMAIN +(field:exactvalue field2:wildcard?)

Every term prefixed by a "+" must be matched in the result. Conversely every term prefixed by a "-" should not be
matched. A term without a prefix can be matched. The query +fieldA:AAAA +(fieldB:BBBB fieldC:CCCCC) will
match if fieldA matches and either of fieldB or fieldC matches. Wildcard symbol "*" will match any length of any
character, while "?" will match any single character. Spaces in the matcher must be escaped using a "\" backslash
i.e. term:ABCD\ EFGH.

Sort

The sort parameter contains a list of fields to sort by, and the order of the sort. For example:

"sorts": [
{ "field": "FIELD1l", "asc": true },
{ "field": "FIELD2", "asc": false}

Where setting "asc" to true means ascending sort, and setting it to false means descending sort.

Depending on the type of field in the index, the data is sorted either alphabetically of numerically.

Filters
Filters can be used to refine the data set.

The exists filter tests if a specific field exists in the data row. If the field does not exist, this data row will be filtered
out. If afield exists but is empty, the exists filter will still match. The optional negative parameter can be used to
invert the filter.

"filters": [
{
"type": "exists",
"field": "fieldA",
"negative": false

The term filter acts much like the query parameter, in that it matches a specific field to a specific value. The
optional negative parameter can be used to invert the filter.

"filters": [
{
"type": "term",
"field": "fieldA",
"matches": "AAAAA",
"negative": false

The terms filter matches to a list of values. If the field value does not match any of the listed value, the data row is
filtered out. The optional negative parameter can be used to invert the filter.

"filters": [
{

"type": "terms",

"field": "fieldA",

"matches": [
"AAAAA",
"BBBBR",
"cceee"

] 4

"negative": false

The range filter allows checking of values between a specific range of values. It is especially useful when checking
date ranges. the range filter works best on numeric fields, but can also be applied to other field. Use the optional
date parameter to indicate the values are date values.

"filters": [
{
"type": "range",
"field": "Q@timestamp",
"from": 1505911108649,
"to": 1508503108650,
"date": false

Multiple filters can be combined in a single list. These filters are applied in an AND fashion, meaning the filters are
cumulative.

The or filter can be used to match any of a list of filters.

"filters": [
{
"type": "or",
"subFilters": [{
"type": "range",
"field": "Q@timestamp",
"from": 1505911108649,
"to": 1508503108650
oo Ao
"type": "exists",
"field": "fieldA",
"negative": false
}]
}
1
Aggregations

Data aggregations can be used to calculate derived values, by grouping rows into buckets, and calculating total
count, in addition to sums, averages, etc.

Aggregations can be nested, using a parameter subAggregations, to allow very specific bucketing. Every
aggregation is also given a name, which can be used to distinguish them in the response.

The terms aggregation creates a bucket for each unique value of a specifically defined field, for example
calculating transaction totals per currency. It can also be used to match the top hits for a open field, for example
the top 50 serial numbers in transaction count. Due to the potential number of different values, the size parameter
of a terms aggregation is always required.

"aggregations": [
{
"name": "serials",
"type": "terms",
"field": "serialNumber",
"size": 10,
"subAggregations": []

The date_histogram aggregation is used to bucket results per time slot. It contains a parameter timezone to
convert from UTC time to a specific timezone. It also contains a parameter interval which indicates the size of the
bucket in time units, e.g. 1d or 30m. The showEmpty parameter indicates whether to list empty buckets, in which
no events occur. The offset parameter can be used as a modifier to the actual interval. For example offset = "+4h"
with an interval of "1d" will create buckets from 4 a.m. till 4 a.m. instead of 12 p.m. till 12 p.m.

"aggregations": [
{

"name": "dhisto",
"type": "date histogram",
"field": "@timestamp",
"interval": "30m",
"timezone": "Europe/Berlin",
"offset": O,
"showEmpty": true,
"subAggregations": []

The following interval units are available:

¢ ms - milliseconds e h->hours e M>months
e s~>seconds e d~>days e (> quarters
e m~>minutes e w->weeks e y-years

The terms aggregation creates a bucket for each possible value for that term in the result set. By default the results
are sorted by highest to lowest count. The size parameter can be used to restrict the maximum number of buckets
returned. The optional missing parameter supplies a value to be used if a record does not contain the field. The
optional order parameter can be used if an alternative sorting of the buckets is required.

"aggregations": [
{
"name":"field values",
"type": "terms",,
"field": "fieldA"
"size": 5,
"order": [{
"field": "fieldB",
"asc": true
1
"missing": "UNKNOWN",
"subAggregations": []

The filter aggregation filters the underlying buckets. This can be useful when combining multiple aggregations into
a single data request, whereby you might want to filter a sub aggregation more that the whole request. The filters
and query parameters can be used to restrict which data rows are counted in the sub aggregations.

"aggregations": [
{
"name" :"average value",
"type": "filter",
"filters": [...],
"query": "",

"subAggregations":[...]

The composite aggregation can be used to combine multiple fields into a single set of buckets. This can be
especially useful when retrieving a large number of buckets from the data. The composite aggregation will create a
bucket for every combination of values of the specified fields, and all sub-aggregations will match all the values of
the specific bucket.

The optional after parameter can be used to specify what the last bucket was that was retrieved in the previous
request, so that the request can return the next bucket that would be enumerated.

The following example would result in buckets for each combination of fieldA and fieldB.

"aggregations": [
{
"name":"my composite",
"type": "composite",
"sources": [{
"field": "fieldA",
"missing": true

b

"field": "fieldB",
"missing": false
1y
"size": 10,
"after": { "fieldA": "VAL1", "fieldB", "AnotherValue" },
"subAggregations": []

The metric aggregation is used to calculate specific metrics for each bucket. It cannot have sub-aggregations.

"aggregations": [
{
"name" :"average value",
"type": "metric",,
"field": "fieldA"
"operation": "avg"

The following metrics are available:

e cardinality » unique count
e avg-> average value

e sum - summed value

e max~> maximum value

e min-> minimum value

By default every bucket will also contain a total result count value.
Paging
The maxResults and offset parameters can be used to restrict the returned data rows. It does not restrict what

data to use in the aggregations. The maxResults parameter specifies the maximum number of rows to
return. The offset parameter indicated how many data rows to skip.

Since it it possible to be only interested in the aggregations, a maxResults value of 0 will actually return 0 data
rows. Every data lookup will return the actual number of matched results.

Itis recommended to prefer large data sets (5k-10k rows), over multiple requests. So 1x1000 rows is better than
10x100 rows.

Data lookup response
The response from a data lookup request contains the following elements:
e count > the total number of matched data rows

e documents > a list of all the matched data rows, see section on indexes for document examples.
e aggregations > a nested map of the aggregations from the request, by name

"count": 6,
"documents": [],
"aggregations": {
"dhisto": {
"type": "date histogram",
"name": "dhisto",

"buckets": [
{
"name": "2017-10-06T00:00:00.0004+02:00",
"key": "1507240800000",

"count": 3,
"aggregations": {
"unique": {
"type": "cardinality",
"name": "unique",
"value": "3.0",

"buckets": []
H}

"name": "2017-10-19T00:00:00.000+02:00",
"key": "1508364000000",
"count": 3,

"aggregations": {
"unique": {
"type": "cardinality",
"name": "unique",
"value": "3.0",

"buckets": []
}}

Every bucket will be given a name and a key. In the case of a terms aggregation, these will be equal. In the case of a
date histogram the key will be the timestamp, and the name the timezone value of the timestamp.

Metric aggregations contain a value result with the numeric value of the metric.

Indexes

The primary indexes available via the data APl are:

e Transactions > all payment transactions
e Events > allterminal events

Transaction Document

@timestamp: "2020-07-30T08:55:14.0002"

@version: "1"

authCode: "945852"

authTime: 5081

authTimestamp: "2020-07-30T08:55:20.0002"
authorizedAmount: 90

brand: "A0000000043060"

cardTime: 554

cardTimestamp: "2020-07-30T08:55:14.0002"

commitTime: 3052

commitTimestamp: "2020-07-30T08:55:29.0002"
committedAmount: 90

complete: true

currency: "EUR"

disposition: "APPROVED"

errorIndicator: "0000000000FFE"

errors: []

event-authorized: "P6820200000000:1596099320000:421614"
event-card: "P6820200000000:1596099314000:421612"
event-committed: "P6820200000000:1596099329000:421618"
extra-CARD-EASE-CARD-HASH: "gbl6M4mwnwD6A31baGlxSEAIg98="
extra-CARD-EASE-CARD-REFERENCE: "abllaed9-42d2-eall-80ca-ecfdbbeda9fb"
extra-MDB-SESSION-DATA: "0301F4"

extra-TXN-AUTH-CODE: "945852"
extra-TXN-AUTH-RESP-CODE: "0OQO"

extra-TXN-MASKED-PAN: "670343xxxxxxx8127"
extra-Timezone: "Europe/Amsterdam"

host: "CREDITCALL"

hostTransactionId: "edbl4a63-42d2-eall-80c4-00505a4161f2"
id: "P6820200000000:26386"

ifd: "CONTACTLESS"

ingestSequence: 11808917

ingestTime: "2020-07-30T08:55:49.340z"

ingestTopic: "json-terminal-transactions"

itemRef: "96"

labels: []

posReference: "10782467"

serialNumber: "P6820200000000"

siteDomain: "DOMAIN CODE"

siteReference: "c-s-1234"

state: "COMMITTED"

terminalDomain: "DOMAIN CODE"

terminalReference: "c-t-15234"

terminalResult: "OK"

transactionId: "26386"

txnTimestamp: "2020-07-30T08:55:14.000Z"

type: "ONLINE"

unexpectedEventStream: false

Event Document

{

"sourceId": 512,

"sequenceNumber": 577,
"extra-Timezone": "Europe/Amsterdam",
"syncTimestamp": "2018-11-30T09:13:14.449z",
"terminalReference": "c-t-8329",
"serialNumber": "P6X20182200216",
"siteReference": "c-s-9559",
"ingestSequence": 1528123,
"terminalAccessDomain": [

" PAYTER_RD" ’

"PAYTER",

"CURO"
] r
"ingestTopic": "json-terminal-events",
"ingestTime": "2018-11-30T09:13:25.8632",
"parseErrors": [],
"body": "DA0104",
"LOG-Type": "ROTATE RTP",
"siteDomain": "PAYTER RD",
"@timestamp": "2018-11-30T09:12:51.000Z",
"@version": "1",
"siteAccessDomain": [

"PAYTER RD",

"PAYTER",

"CURO"
] ’
"sourceName": "LOG",

"id": "P6X20182200216:1543569171000:577",

"terminalDomain":

"PAYTER RD",

"timestamp": "2018-11-30T09:12:51.0002"

Common Use Cases
Import Transaction Data

A common use case is to use the API to ingest all transaction data into an external system, the
best way to perform this is using the following request repeated until no more documents are
returned.

{

"index":"Transactions",
"maxResults":1000,

"query":"",
"sorts": [
{
"field": "ingestTime",
"asc": true
}
} r
"filters": [
{
"type": "range",
"field": "ingestTime",
"from": <LAST INGESTED TIME>
}I
{
"type": "term",
"field": "complete",
"matches": "true"
}
J ’
"aggregations": []

This will return all records which have a sequence number after the given <LAST INGESTED TIME> and only return
records that are complete and will no longer change. Transaction records can change overtime as updates to the
transaction occur, for example offline transactions that are posted for settlement will still change after first
appearing in the data. They are however only marked as complete once the final result is known.

Due to the distributed nature the backend the requester needs to be prepared to deal with multiple transactions
on the same ingested time, there is no monotonically increasing sequence number so a transaction that was the
last transaction returned in previous request will be returned again as the first transaction when its ingestTime is
used as the <LAST INGESTED TIME>. This is required to ensure any other transactions on the same ingestTime will

be returned.

Appendix
Sample HTTP requests

Authentication

Authenticate

POST https://api.mypayter.com/API/Auth HTTP/1.1
Content-Type: application/json

Content-Length: 66

Host: api.mypayter.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

"username" :"USER",
"password" :"PASSWORD",
"domain":"DOMAIN"

}

Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8
Transfer-Encoding: chunked

Server: Jetty(9.3.21.v20170918)

"tokenId":"3ea2714d-c445-4c5e-8590-28d806065784",
"userId":1,
"username" : "USER",
"domain":"DOMAIN",
"created":154115487899¢6,
"expiresIn":86400
}

View token

GET https://api.mypayter.com/API/Auth/3ea2714d-c445-4c5e-8590-28d806065784 HTTP/1.1
Accept-Encoding: gzip,deflate

Authorization: CURO-TOKEN token="3ea2714d-c445-4c5e-8590-28d806065784"

Host: api.mypayter.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8
Transfer-Encoding: chunked

Server: Jetty(9.3.21.v20170918)

"tokenId":"3ea2714d-c445-4c5e-8590-28d806065784",
"userId":1,

"username" : "USER",

"domain":"DOMAIN",

"created":154115487899¢0,

"expiresIn":86400

Delete token

DELETE https://api.mypayter.com/API/Auth/3ea2714d-c445-4c5e-8590-28d806065784 HTTP/1.1
Accept-Encoding: gzip,deflate

Authorization: CURO-TOKEN token="3ea2714d-c445-4c5e-8590-28d806065784"

Content-Type: application/json

Content-Length: 0

Host: api.mypayter.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

Response
HTTP/1.1 204 No Content
Server: Jetty(9.3.21.v20170918)

